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SUMMARY

This paper presents numerical methods for solving turbulent and two-phase transonic �ow problems. The
Navier–Stokes equations are solved using cell-vertex Lax–Wendro� method with arti�cial dissipation
or cell-centred upwind method with Roe’s Riemann solver and linear reconstruction. Due to a big
di�erence of time scales in two-phase �ow of condensing steam a fractional step method is used. Test
cases including 2D condensing �ow in a nozzle and one-phase transonic �ow in a turbine cascade with
transition to turbulence are presented. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Condensation of steam appears e.g. in last stages of large enterprise turbines, where it de-
creases machine e�ciency and durability of the blades. A �ow model, which can describe
such a �ow including condensation and turbulence phenomena is presented [1]. Turbulence
transition is also considered.

2. GOVERNING EQUATIONS

Two-phase �ow in this paper means the �ow of the mixture of vapour and water droplets.
We consider following simpli�cations: condensation is homogenous; droplets are convected
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by the vapour; the wetness (mass fraction of droplets) is small i.e. volume of droplets can
be neglected; the pressure of the mixture is approximated by the pressure of vapour; droplets
are described by the Hill’s approximation [2].
Condensation has two di�erent mechanisms, nucleation (creation of new droplets) and

droplet growth. Nucleation starts, when the vapour temperature drops su�ciently below the
saturation temperature (typically between 30 and 40 K). The size of new droplets is given
by the value of critical radius. The number of new droplets is given by the nucleation rate J
according to Becker and D�oring [3], which gives the number of new droplets per unit volume.
The growth of existing droplet depends on the temperature of surrounding vapour. We use the
relation of Valha [4] for time derivative of droplet radius ṙ. Material properties of vapour are
taken from the steam tables in the form of polynomial functions of temperature and pressure.
For the modeling of the droplets we have chosen Hill’s approximation. Whole droplet size
spectrum is approximated by parameters

Q0 = n; Q1 =
n∑
i=1
ri; Q2 =

n∑
i=1
r2i ; r=

√
Q2=Q0 (1)

where n denotes the total number of droplets per unit mass of the mixture, ri is the radius of
ith droplet and r is the average radius.
The Navier–Stokes equations for the 2D �ow of the mixture‡ and the conservation equations

for variables Q0, Q1, Q2 can be written together as a one system of partial di�erential equations
in conservative form (2)
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)
; �
J
�

]T

where the �rst four equation are the Navier–Stokes equation for the mixture and the last four
equations are the transport equations for mass of droplets, Q2, Q1 and Q0, respectively. The
symbol � denotes mixture density, ux and uy mixture velocity components, p pressure, e total
energy of mixture per unit volume, w wetness, �l denotes the density of liquid phase, rc
denotes the critical radius, �xx, �xy, �yy are shear stresses given by Newton law, qx, qy are

‡The droplets are of course 3D phenomenon. The 2D model is considered in a sense of 3D �ow uniform in the
z-direction and with zero z-component of velocity. The Hill’s model then can be used also in 2D.
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heat �uxes given by Fourier law, t time and x and y spatial coordinates. The �rst four and
the last four equations are coupled by the equation for the pressure according to �S�tastn�y [5]

p=(�− 1) (1− w)
1 + w(�− 1)

[
e − 1

2
�(u2x + u

2
y) + �wL

]
(3)

where � is the speci�c heat ratio considered as a function of temperature �= cp(T )=(cp(T )−
Rv). Condensation is taken into account only for inviscid or laminar �ow model (above
equations). One-phase �ow model (RANS) is considered in the case of turbulent �ow. For
encountering of turbulence e�ects we use models based on a turbulent viscosity, namely
modi�cation of algebraic model of Baldwin and Lomax and one equation model of Spalart
and Allmaras. We can specify transition onset and o�set by intermittency coe�cient varying
from zero in laminar �ow to one in fully turbulent �ow. Point of transition is computed using
integral boundary layer method.

2.1. Formulation of the problem

Integral form of Equation (2) is solved in the computational domain. For the inlet we prescribe
total speed of sound a0, total density �0 and velocity angle �. For the outlet we prescribe
integral value of static pressure p. On the wall we prescribe no-slip condition and condition
of adiabatic wall. Point-to-point periodic boundary condition is also considered. The system of
conditions is completed by suitable Neumann’s conditions. Jacobian of the transport equations
has only one multiple eigenvalue u, hence only entering characteristic is in the inlet boundary,
where we prescribe dry steam conditions (w=Qi=0). Value of turbulent viscosity for the
Spalart–Allmaras turbulence model is set to zero at the inlet and along the wall and the normal
derivative of the turbulent viscosity is prescribed zero at the inlet and the outlet.

3. NUMERICAL METHODS

We use cell-vertex and cell-centred methods. The cell-vertex �nite volume method is based
on the Lax–Wendro� scheme, i.e. the value of Wn+1

i; j is calculated from following Taylor
expansion
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(4)

where the �rst order term is evaluated on the �nite volume Vi; j and the second order terms
is evaluated on dual �nite volume V ∗

i; j, see Figure 1. The second time derivative is treated in

y

x

Pij
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Figure 1. Finite volumes for cell-vertex method.
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the following way:
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remaining time derivatives of vectors F, G and P are calculated numerically

Wn+1=2
i; j =Wn
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(7)

where F(�) =Fc − �Fv; G(�) =Gc − �Gv, �∈ {0; 1} and n@V denotes the unit vector normal
to the boundary of V . The term DIS is an Jameson type conservative arti�cial viscosity.
The derivatives of velocity and the temperature for viscous �uxes are evaluated using Gauss
theorem on �nite volumes V .
As the second choice we present cell-centred �nite volume method with Roe’s Riemann

solver with entropy correction, linear reconstruction, Van Leer’s or Barth’s limiter and explicit
Runge–Kutta or implicit Euler backward time stepping. Implicit Euler method for solution in
element i can be written as

Wn+1
i =Wn

i − kRn+1i ≈Wn
i − k

(
Rni +

@Ri
@W

(Wn+1
i −Wn

i )
)

(8)

where Rn is an update residual from time level n and k is an constant including time-step.
This leads to large system of equation for unknown Wn+1 −Wn. The system is solved using
GMRES method with ILU(0) preconditioning. We evaluate Jacobian matrix numerically using
one-sided di�erences with �xed �=10−6.
For the one equation turbulence model additional equation has to be solved. We use �rst

order cell centred upwind method. Time integration is explicit or implicit. For the implicit time
integration we again use �rst order Euler time integration, but Jacobian matrix is computed
analytically. Positive source terms are treated explicitly, while negative are considered in the
computed time level. It enhances stability and robustness of the method.
The time step 	t, which is suitable for the modeling of convection–di�usion part is too big

for the modeling of condensation. Therefore we use kind of symmetric fractional step method

@
@t
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G(ii) ;

@
@t
W=P(iii) (9)

where the solution W in time t is used as an initial data for Equation (i), which is solved
by N-times repeated 2-stage Runge–Kutta method with time step 	t=(2N), where 	t=N
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corresponds to the time scale of condensation and 	t comes from the stability condition of
cell-vertex method for the equation (ii). The result from Equation (i) is then used as an initial
data for Equation (ii), which is solved by the one step of cell-vertex method with the time
step 	t. Finally the result from Equation (ii) is used as an initial data for Equation (iii),
which is again solved by N-times repeated Runge–Kutta method with time step 	t=(2N).
After this procedure we get the updated solution W in time t +	t.

4. NUMERICAL RESULTS

Numerical results for two cases of an inviscid two-phase �ow in Barschdo� nozzle [6] with the
same inlet total pressure p01 = 78390 Pa, two di�erent inlet total temperatures and supersonic
outlet velocity (no outlet boundary condition) are shown in Figure 2. Heat released by the
nucleation slows down the supersonic �ow resulting in a pressure jump called the condensation
shock. The pressure distributions in Figure 2 show a well captured position of this pressure
jump. The magnitude of pressure rise for T01 = 373:15 K (right graph in Figure 2) is slightly
over-predicted most probably due to used inviscid �ow model (higher jump is expectable
without physical viscosity).
Second presented case is a viscous laminar �ow in turbine cascade SE1050 [7–9]. In-

let angle is �1 = 19:3◦, isentropic outlet Mach number M2is = 1:198 and Reynolds number
Re=1:5× 106.
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Figure 2. Pressure distribution along the nozzle axis (top) and experimental data. Isolines of
p=p0 (	p=p0 = 0:02) (bottom). T01 = 380:50 K (on the left), T01 = 373:15 K (on the right).
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Figure 3. Mach number isolines 	M =0:05. Left: Air �=1:4. Right: Steam without condensation,
�= �(T ). Bold line denotes the sonic line.
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Figure 4. Flow in SE1050, explicit Roe (MUSCL) method, isolines of Mach number (marks denote
the sonic line, 	M =0:05). Velocity magnitude on suction side near the trailing edge. From left to
right: (a) Fully turbulent �ow model; (b) turbulent �ow model with forced transition, arrow shows the
transition onset; and (c) velocity magnitude in the normal direction (crossection on suction side near

trailing edge). Turbulent computation starts from a laminar solution.

Mach number isolines in Figure 3 show the in�uence of the �owing media. The shock waves
for the �ow of steam (�= �(T )) are weaker than for the �ow of air (�=1:4). The shape of
the sonic line is also slightly di�erent.
Turbulent �ows of an ideal gas (�=1:4) in SE1050 obtained by cell-centred method is

presented in Figure 4. Velocity distribution in the boundary layer on the suction side near
the trailing edge is plotted in Figure 4(c). Substantial di�erence between laminar, turbulent
computation and computation with transition can be observed, both in the velocity distribution
across the boundary layer and in the slope of the graph in the vicinity of the blade a�ecting
drag and hence losses. The convergence is measured by the loss coe�cient �uctuations,
because Barth’s limiter causes the stall of the drop of the norm of the residual after a few
order of magnitude.
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5. CONCLUSIONS

Presented cell-vertex method shows a good agreement with experimental data for the two-
phase inviscid �ow with condensation in the nozzle. The local character of condensation
model enables easy extension to 3D case. The implicit FV method (applied for the one-phase
turbulent �ow) with least square reconstruction and Barth’s limiter [10] renders to be very
e�cient and allows to use CFL numbers in order of 200. Future investigation of turbulent
�ow with phase change is considered.
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